PowerLawWithExponentialGaussian#

class ctao_cr_spectra.spectral.PowerLawWithExponentialGaussian(normalization, index, e_ref, f, mu, sigma)#

Bases: PowerLaw

A power law with an additional Gaussian bump.

Beware that the Gaussian is not normalized!

\[\Phi(E, \Phi_0, \gamma, f, \mu, \sigma, E_\text{ref}) = \Phi_0 \left( \frac{E}{E_\text{ref}} \right)^{\gamma} \cdot \left( 1 + f \cdot \left( \exp\left( \operatorname{Gauss}(\log_{10}(E / E_\text{ref}), \mu, \sigma) \right) - 1 \right) \right)\]

Where \(\operatorname{Gauss}\) is the unnormalized Gaussian distribution:

\[\operatorname{Gauss}(x, \mu, \sigma) = \exp\left( -\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2 \right)\]
Attributes:
normalization: astropy.units.Quantity[flux]

\(\Phi_0\),

a: float

\(\alpha\)

b: float

\(\beta\)

e_ref: astropy.units.Quantity[energy]

\(E_\text{ref}\)

Methods Summary

__call__(energy)

Evaluate the flux at a given energy.

Methods Documentation

__call__(energy)#

Evaluate the flux at a given energy.

Parameters:
energyastropy.units.Quantity

The energy at which to evaluate the flux. Should be in units of energy.

Returns:
astropy.units.Quantity

The flux at the given energy.